On the magnitude of the electrostatic contribution to ligand-DNA interactions.

نویسندگان

  • V K Misra
  • B Honig
چکیده

A model based on the nonlinear Poisson-Boltzmann equation is used to study the electrostatic contribution to the binding free energy of a simple intercalating ligand, 3,8-diamino-6-phenylphenanthridine, to DNA. We find that the nonlinear Poisson-Boltzmann model accurately describes both the absolute magnitude of the pKa shift of 3,8-diamino-6-phenylphenanthridine observed upon intercalation and its variation with bulk salt concentration. Since the pKa shift is directly related to the total electrostatic binding free energy of the charged and neutral forms of the ligand, the accuracy of the calculations implies that the electrostatic contributions to binding are accurately predicted as well. Based on our results, we have developed a general physical description of the electrostatic contribution to ligand-DNA binding in which the electrostatic binding free energy is described as a balance between the coulombic attraction of a ligand to DNA and the disruption of solvent upon binding. Long-range coulombic forces associated with highly charged nucleic acids provide a strong driving force for the interaction of cationic ligands with DNA. These favorable electrostatic interactions are, however, largely compensated for by unfavorable changes in the solvation of both the ligand and the DNA upon binding. The formation of a ligand-DNA complex removes both charged and polar groups at the binding interface from pure solvent while it displaces salt from around the nucleic acid. As a result, the total electrostatic binding free energy is quite small. Consequently, nonpolar interactions, such as tight packing and hydrophobic forces, must play a significant role in ligand-DNA stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A theoretical survey on strength and characteristics of F•••F, Br•••O and Br•••Br interactions in solid phase

A quantum chemical investigation was carried out to study the properties of intermolecular F•••F, Br•••Br and Br•••O interactions in crystalline 1-bromo-2,3,5,6-tetrafluoro-nitrobenzene (BFNB). This system was selected to mimic the halogen-halogen as well as halogen bonding interactions found within crystal structures as well as within biological systems. We found that fluorine atoms have weak ...

متن کامل

Electrostatic contributions to heat capacity changes of DNA-ligand binding.

Significant heat capacity changes (DeltaCp) often accompany protein unfolding, protein binding, and specific DNA-ligand binding reactions. Such changes are widely used to analyze contributions arising from hydrophobic and polar hydration. Current models relate the magnitude of DeltaCp to the solvent accessible surface area (ASA) of the molecule. However, for many binding systems-particularly th...

متن کامل

Thermodynamic Analysis for Cationic Surfactants Binding to Bovine Serum Albumin

In the present study, the binding isotherms for interaction of a homologous series of n-alkyltrimethyl ammonium bromides with bovine serum albumin (BSA) have been analyzed on basis of intrinsic thermodynamic quantities. In this regards, the intrinsic Gibbs free energy of binding, AGb(i,)„ has been estimated at various surfactant concentrations and its trend of variation for both binding sets ha...

متن کامل

پتانسیل الکتروستاتیک یک مولکول زیستی مارپیچی در رژیم دیبای- هوکل با در نظر گرفتن ناهمگنی دی‌الکتریک

Inside living cells, many essential processes involve deformations of charged helical molecules and the interactions between them. Actin filaments and DNA molecules are important examples of charged helical molecules. In this paper, we consider an impermeable double stranded charged molecule in the solvent. According to the nature, the dielectric constant of the molecule is considerably differe...

متن کامل

Bifurcation and Chaos in Size-Dependent NEMS Considering Surface Energy Effect and Intermolecular Interactions

The impetus of this study is to investigate the chaotic behavior of a size-dependent nano-beam with double-sided electrostatic actuation, incorporating surface energy effect and intermolecular interactions. The geometrically nonlinear beam model is based on Euler-Bernoulli beam assumption. The influence of the small-scale and the surface energy effect are modeled by implementing the consistent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 92 10  شماره 

صفحات  -

تاریخ انتشار 1995